

Innovative Technologies for High-Speed Roads Moscow (Russia) - 13 October 2015

The use of LSDYNA to predict roadside safety equipment behavior: a useful complementary tool for Accident Reconstruction

> Joseph Marra, Dario Guarino Joseph.Marra@gdtech.eu GDTech

Introduction

Possible standards concerned

Introduction

How does road safety work?

Haddon Matrix	Driver	Car	Road
Before			A
During		4	术
After	HORVITAL		C

Introduction

How does road safety work?

Fields of application for simulation

Fields of application for simulation

Fields of application for simulation

Product Optimization

Product Improvement

Fields of application for simulation

Modification of VRS t	Annex (normat ested in accordance EN 1317-3 or E	A ive) ce with EN 1317-1, № EN NV 1317-4	1317-2 🕢	
	Table A.1 – Categories of modifications			
A.1 General	Category	Change	Description	
This annex gives rules for eva been modified and methods performance.	A	Slight	Modifications requiring no mechanical changes to the VRS.	
This annex gives rules for eva been modified and methods t performance.	В	Moderate	Modifications to one or more components where their effects on the performance of the VRS can be determined by static or dynamic analysis or other appropriate means.	
	С	Significant	Modifications in excess of A or B.	
L	С	Significant	Modifications in excess of A or B.	

Category B allows simulation to be used for certifying modified products

	What you have :	What you want :	What you need :
•	A product that passed the necessary crash-tests A simulation reproducing the successful crash-tests	 adapting your product without having to perform new crash tests 	 A simulation of the modified product using proven models according to EU best-practices

	Real Vehicle	Vehicle model	EN1317 Specifications	Tolerances	Acceptance
Length	7.2 m	7.22 m	-	-	-
Width	2.52 m	2.52 m	-	-	-
Wheel track	1.74 m	1.96 m	2 m	±15%	YES
N of axles	2	2	-	-	-
Wheel radius	0.44 m	0.45 m	0.46 m	±15%	YES
Wheel base	4.03 m	4.03 m	4.6 m	±15%	YES
Height (platform)	1.44 m	1.08 m	-	-	-

Development of a MAN truck (10T) with support of:

Measure	С-Т	V-T	Acceptance	Difference
Dynamic deflection [m]	0.9	0.78		
Normalized dynamic deflection [m]	0.8	0.76	<0.18	0.04
Working Width [m]	0.9	0.88		
Normalized working width [m]	0.9	0.86	<0.18	0.04
Class of normalized working width	W3	W3		
Max permanent deflection [m]	0.6	0.54		

Fields of application for simulation

3. Road Design

Example of **3 criteria** for comparing safety barriers **in standardized** crash-test **conditions**:

Those performances can change in non-standardized conditions.

Bridge load tranfer

Bridge Resistance Numerical models calibrated with experimental tests

ERF

Other cases

Fields of application for simulation

Accident

reconstructed

4. Accident Reconstruction

Multi-Body codes PC-Crash, ..

Many impact scenario simulated

Information that can be gathered:

Impact speed and angle

• Vehicle dynamic

Trajectory reconstruction

Innovative Technologies for High-Speed Roads, 13 October 2015, Moscow Russia

• ...

Helpfulness of using FEM analysis (for example using LSDYNA):

- Roadside safety equipment behavior analyses
- Evaluation of alternative roadside safety hardware solutions to improve safety
- Other interests of using FEM?

Post-spacing – Influence on the ASI index

Source: http://dtrf.setra.fr/pdf/pj/Dtrf/0001/Dtrf-0001915/T01915.pdf?openerPage=notice

Frontal impact on N2

Crossing of central reserves

TB81 - 38T Truck, 65km/h, 20° Time = 1.495

Safe Poles (EN12767, ...)

Concerned products

Safety barriers (EN1317, ...)

And all other roadside safety hardware (crash cushions, truck mounted attenuators, motorcyclist protections, ...)

Thank you for your attention!

Joseph MARRA - 0032 479 43 04 59 - Joseph.Marra@GDTech.EU

